A Hamiltonian Boussinesq model with horizontally sheared currents
نویسندگان
چکیده
We are interested in the numerical modeling of wave-current interactions around beaches’ surf zones. Any model to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have formulated the Hamiltonian dynamics of a new water wave model. This model incorporates both the shallow water model and the potential flow model as limiting systems. The variational model derived by Cotter and Bokhove (2010) is such a model, but the variables used have been difficult to work with. Our new model has a three–dimensional velocity field consisting of the full three– dimensional potential field plus horizontal velocity components, such that the vertical component of vorticity is nonzero. Our aims are to augment the new model locally with bores and to derive a numerical finite element discretization of the new model including the capturing of bores. As a preliminary step, the variational finite element discretization of Miles’ variational principle coupled to an elliptic mesh generator is shown.
منابع مشابه
Baroclinic Instability and Loss of Balance
Under the influences of stable density stratification and Earth’s rotation, large-scale flows in the ocean and atmosphere have a mainly balanced dynamics— sometimes called the slow manifold—in the sense that there are diagnostic hydrostatic and gradient-wind momentum balances that constrain the fluid acceleration. The nonlinear Balance Equations are a widely successful, approximate model for th...
متن کاملWaveactivity conservation laws for the threedimensional anelastic and Boussinesq equations with a horizontally homogeneous background flow
Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been ...
متن کاملModeling Breaking Waves and Wave-induced Currents with Fully Nonlinear Boussinesq Equations
A Boussinesq-type wave model is developed to numerically investigate the breaking waves and wave-induced currents. All the nonlinear terms are retained in the governing equations to keep fully nonlinearity characteristics and it hence more suitable to describe breaking waves with strong nonlinearity in the nearshore region. The Boussinesq equations are firstly extended to incorporate wave break...
متن کاملSupersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations
We construct new integrable coupled systems of N = 1 supersymmetric equations and present integrable fermionic extensions of the Burgers and Boussinesq equations. Existence of infinitely many higher symmetries is demonstrated by the presence of recursion operators. Various algebraic methods are applied to the analysis of symmetries, conservation laws, recursion operators, and Hamiltonian struct...
متن کامل